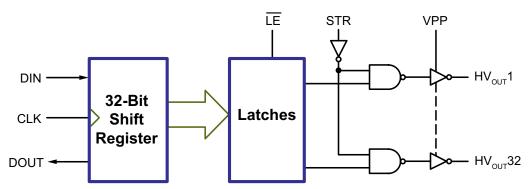
32-Channel Vacuum-Fluorescent Display Driver

Features

- ▶ 32 output lines
- ▶ 90V output swing
- Active pull-down
- Latches on all outputs
- ► Up to 6.0MHz @ V_{DD} = 5.0V
- ► -40°C to +85°C operation

Applications


- Vacuum flourescent displays
- ▶ DC plasma displays

General Description

The HV518 is designed for vacuum fluorescent or DC plasma applications, where it can serve as a segment, digit or matrix display driver. Each device has 32 outputs, 32 latches and a 32-bit cascadable shift register.

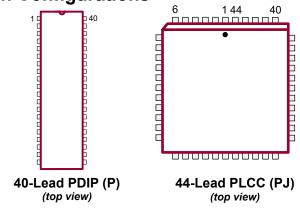
Serial data enters the shift register on the LOW-to-HIGH transition of the clock input. With latch enable ($\overline{\text{LE}}$) HIGH, parallel data is transferred to the output buffers through a 32-bit latch. When $\overline{\text{LE}}$ is low the data is stored in the latch. When STROBE (STR) is LOW, all outputs are enabled; if STROBE is HIGH, all outputs are LOW.

Block Diagram

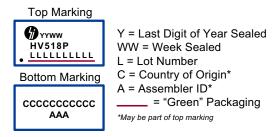
Ordering Information

	Package Options		
Device	40-Lead PDIP 2.095x.580in body (max) .250in height (max) .100in pitch	44-Lead PLCC .653x.653in body .180in height (max) .050in pitch	
HV518	HV518P-G	HV518PJ-G	

Absolute Maximum Ratings

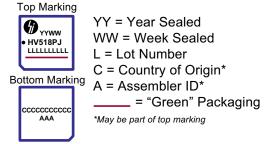

Parameter	Value
Supply voltage, V _{DD}	-0.5V to +6.0V
Supply voltage, V _{PP}	-0.5V to +90V
Logic input levels	-0.5V to V _{DD} +0.5V
Continuous total power dissipation ^{1,2}	1200mW
Operating temperature	-40°C to +85°C
Storage temperature	-65°C to +150°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. Continuous operation of the device at the absolute rating level may affect device reliability. All voltages are referenced to GND.


Notes:

- 1. Duty cycle is limited by the total power dissipated in the package.
- For operation above 25°C ambient, derate linearly to 85°C at 20mW/
 °C.

Pin Configurations



Product Markings

Package may or may not include the following marks: Si or 🌎

40-Lead PDIP (P)

Package may or may not include the following marks: Si or **44-Lead PLCC (PJ)**

⁻G indicates package is RoHS compliant ('Green')

Recommended Operating Conditions (T_A = 25°C, unless otherwise noted)

Sym	Parameter	Min	Max	Unit	Conditions
V _{DD}	Logic supply voltage	4.5	5.5	V	
V_{PP}	High voltage supply	8.0	80	V	
V _{IH}	High-level input voltage	3.5	-	V	V _{DD} = 4.5V, See Figure 1
V _{IL}	Low-level input voltage	-	1.0	V	V _{DD} = 4.5V, See Figure 1
I _{OH}	High-level output current	-25	-	mA	
I _{OL}	Low-level output current	-	2.0	mA	
f _{CLK}	Clock frequency	-	6.0	MHz	V _{DD} = 4.5V, See Figure 1
t _{w(CKH)}	Pulse duration, clock high	83	-	ns	V _{DD} = 4.5V
t _{w(CKL)}	Pulse duration, clock low	83	-	ns	V _{DD} = 4.5V
t _{su}	Setup time, data before clock	75	-	ns	V _{DD} = 4.5V
t _h	Hold time, data after clock	75	-	ns	V _{DD} = 4.5V
T _A	Operating ambient temperature	-40	85	°C	

Electrical Characteristics (over recommended ranges of operating ambient temperature unless otherwise noted.)

Sym	Parameter		Min	Тур	Max	Units	Conditions
I _{DD}	Supply current		-	-	10	mA	$V_{DD} = 5.0V, f_{CH} = 6.0 \text{ MHz}$
I _{DDQ}	Quiescent supply current		-	-	0.5	mA	$V_{DD} = 5.5V, V_{IN} = 0V$
			-	-	12	mA	Outputs high, T _A = -40°
I _{PP}	Supply current		-	7.0	10	mA	Outputs high, T _A = 0 to +85°
			-	-	500	μA	Outputs low
\ \ <u>\</u>	UV aparating ourrant	HV output	70	-	-	٧	I _{OH} = -25mA
V _{OH}	HV _{IN} operating current	Serial output	4.5	4.9	5.0		$V_{DD} = 5.0V, I_{OH} = -20\mu A$
V	IV operating ourrent	HV output	-	-	5.0	V	I _{OL} = 1.0mA
V _{OL}	LV _{IN} operating current	Serial output	-	0.06	8.0	V	I _{OL} = 20μA
I _{IH}	Logic input current high		-	0.1	1.0	μA	$V_{IH} = V_{DD}$
I _{IL}	Logic input current low		-	-0.1	-1.0	μA	V _{IL} = 0V

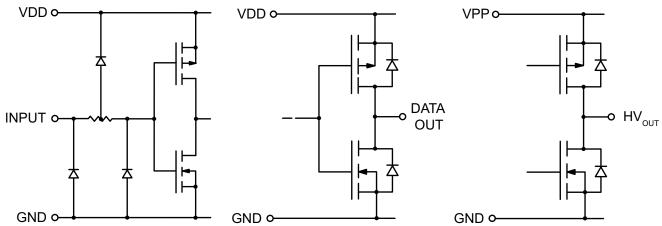
Note:

The total number of ON outputs times the duty cycle must not exceed the allowable package power disspation.

Switching Characteristics (V_{PP} = 80V, C_L = 50pF, T_A = 25°C, unless otherwise noted)

Sym	Parameter		Min	Тур	Max	Unit	Conditions
t _d	t _d Delay time, clock to data output		-	-	600	ns	C _L = 15pF, See Figure 2
Delay time, high-to-low-	From latch enable	-	-	1.5	0	V _{DD} = 4.5V, See Figure 3	
DHL	level, HV output	From strobe	-	-	1.0	μs	V _{DD} = 4.5V, See Figure 4
4	Delay time, low-to-high-	From latch enable	-	-	1.5		V _{DD} = 4.5V, See Figure 3
t _{DLH}	level, HV output	From strobe	-	-	1.0	μs	V _{DD} = 4.5V, See Figure 4
t _{THL}	Transition time, high-to-low-level, HV output		-	-	3.0	μs	V _{DD} = 4.5V, See Figure 4
t _{TLH}	Transition time, low-to-high-level, HV output		-	1	2.5	μs	V _{DD} = 4.5V, See Figure 4

Power-Up/ Power-Down Sequences


Power-up sequence should be the following:

- 1. Connect ground.
- 2. Apply V_{DD}.
- 3. Set all inputs (Data, CLK, EN, etc.) to a known state.
- 4. Apply V_{DD}.

The $V_{_{PP}}$ should not drop below $V_{_{DD}}$ or float during operation.

Power-down sequence should be the reverse of the above.

Input and Output Equivalent Circuits

Parameter Measurement Information

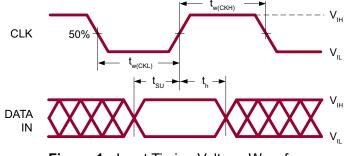


Figure 1: Input Timing Voltage Waveforms

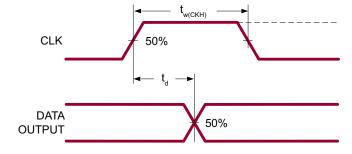


Figure 2

Figure 3

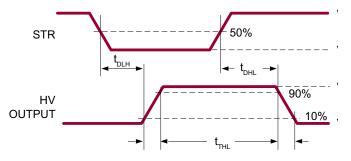


Figure 4: Switching-Time Voltage Waveforms

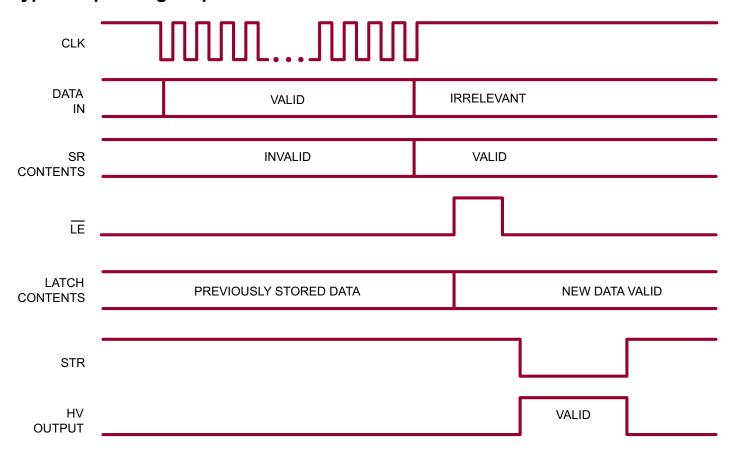
Note:

For testing purposes, all input pulses have maximum rise and fall times of 30 nsec.

Truth Tables

Input

Data In	CLK	Data Out
Н	_ €	Н
L	_ F	L
X	No Change	*


^{*} Previous state.

Output

Data In	ĪĒ.	STR	HV Outputs
X	X	Н	All Low
Н	Н	L	High
L	Н	L	Low
X	L	L	*

^{*} Previous state.

Typical Operating Sequence

Pin Descriptions

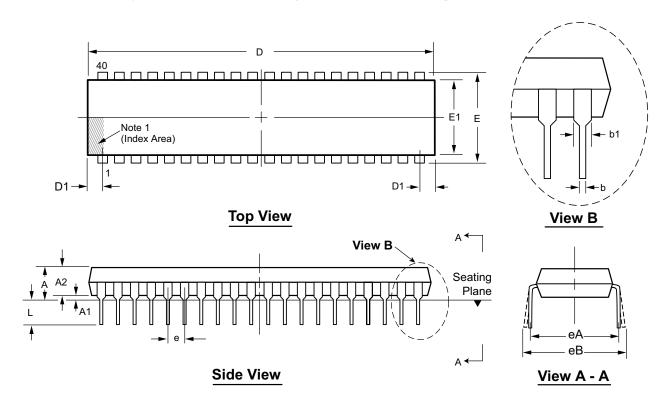
40-Lead PDIP (P)

Pin#	Function
1	VPP
2	SERIAL OUT
3	HV _{OUT} 32
4	HV _{OUT} 31
5	HV _{OUT} 30
6	HV _{OUT} 29
7	HV _{OUT} 28
8	HV _{OUT} 27
9	HV _{OUT} 26
10	HV _{OUT} 25
11	HV _{OUT} 24
12	HV _{OUT} 23
13	HV _{OUT} 22
14	HV _{OUT} 21

Pin#	Function
15	HV _{OUT} 20
16	HV _{OUT} 19
17	HV _{OUT} 18
18	HV _{OUT} 17
19	STR
20	GND
21	CLK
22	Œ
23	HV _{out} 16
24	HV _{out} 15
25	HV _{OUT} 14
26	HV _{out} 13
27	HV _{OUT} 12
28	HV _{out} 11

Pin#	Function
29	HV _{OUT} 10
30	HV _{OUT} 9
31	HV _{OUT} 8
32	HV _{OUT} 7
33	HV _{OUT} 6
34	HV _{out} 5
35	HV _{OUT} 4
36	HV _{OUT} 3
37	HV _{OUT} 2
38	HV _{out} 1
39	DATA IN
40	VDD

44-Lead PLCC (PJ)


Pin#	Function
1	VPP
2	SERIAL OUT
3	HV _{OUT} 32
4	HV _{OUT} 31
5	HV _{OUT} 30
6	NC
7	HV _{OUT} 29
8	HV _{OUT} 28
9	HV _{OUT} 27
10	HV _{OUT} 26
11	HV _{OUT} 25
12	HV _{OUT} 24
13	HV _{OUT} 23
14	HV _{OUT} 22
15	HV _{OUT} 21

Pin #	Function
16	HV _{OUT} 20
17	HV _{OUT} 19
18	N/C
19	HV _{OUT} 18
20	HV _{OUT} 17
21	STR
22	GND
23	CLK
24	Œ
25	HV _{OUT} 16
26	HV _{OUT} 15
27	HV _{OUT} 14
28	N/C
29	N/C
30	HV _{OUT} 13

Pin#	Function
31	HV _{out} 12
32	HV _{out} 11
33	HV _{OUT} 10
34	HV _{OUT} 9
35	HV _{OUT} 8
36	HV _{OUT} 7
37	HV _{out} 6
38	HV _{OUT} 5
39	HV _{out} 4
40	HV _{out} 3
41	HV _{OUT} 2
42	HV _{out} 1
43	DATA IN
44	VDD

40-Lead PDIP (.600in Row Spacing) Package Outline (P)

2.095x.580in body (max), .250in height (max), .100in pitch

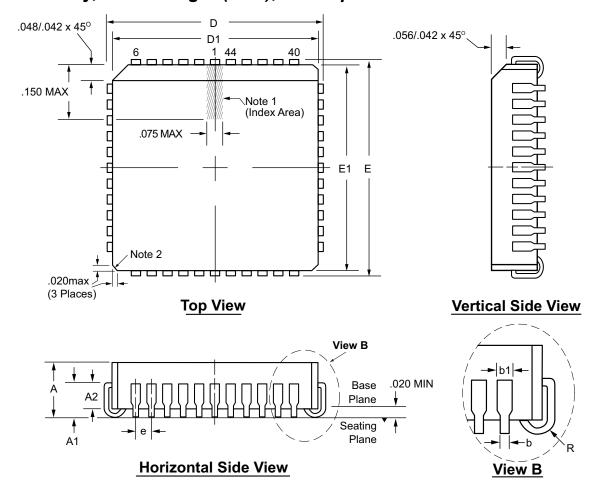
Note:

 A Pin 1 identifier must be located in the index area indicated. The Pin 1 identifier can be: a molded mark/identifier; an embedded metal marker; or a printed indicator.

Symbo	ol	Α	A1	A2	b	b1	D	D1	E	E1	е	eА	еВ	L
Dimension (inches)	MIN	.140*	.015	.125	.014	.030	1.980	.065 [†]	.590 [†]	.485	.100 BSC	.600 BSC	.600*	.115
	NOM	-	-	-	-	-	-	-	-	-			-	-
	MAX	.250	.055*	.195	.023 [†]	.070	2.095	.085*	.625	.580			.700	.200

JEDEC Registration MS-011, Variation AC, Issue B, June, 1988.

Drawings not to scale.


Supertex Doc. #: DSPD-40DIPP, Version D041009.

^{*} This dimension is not specified in the JEDEC drawing.

[†] This dimension differs from the JEDEC drawing.

44-Lead PLCC Package Outline (PJ)

.653x.653in body, .180in height (max), .050in pitch

Notes:

- A Pin 1 identifier must be located in the index area indicated. The Pin 1 identifier can be: a molded mark/identifier; an embedded metal marker; or a printed indicator.
- 2. Actual shape of this feature may vary.

Symb	ol	Α	A1	A2	b	b1	D	D1	E	E1	е	R
Dimension (inches)	MIN	.165	.090	.062	.013	.026	.685	.650	.685	.650	.050 BSC	.025
	MOM	.172	.105	-	-	-	.690	.653	.690	.653		.035
	MAX	.180	.120	.083	.021	.036 [†]	.695	.656	.695	.656		.045

JEDEC Registration MS-018, Variation AC, Issue A, June, 1993.

† This dimension differs from the JEDEC drawing.

Drawings not to scale.

Supertex Doc. #: DSPD-44PLCCPJ, Version F031111.

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to http://www.supertex.com/packaging.html.)

Supertex inc. does not recommend the use of its products in life support applications, and will not knowingly sell them for use in such applications unless it receives an adequate "product liability indemnification insurance agreement." **Supertex inc.** does not assume responsibility for use of devices described, and limits its liability to the replacement of the devices determined defective due to workmanship. No responsibility is assumed for possible omissions and inaccuracies. Circuitry and specifications are subject to change without notice. For the latest product specifications refer to the **Supertex inc.** (website: http://www.supertex.com)

©2011 **Supertex inc.** All rights reserved. Unauthorized use or reproduction is prohibited

