
EAGLE CAD layers reference rev. 1.0 1

EAGLE CAD layers reference
rev. 1.0 – March 2011

Introduction
This document can be used as a layers reference for those looking

to create PCBs with EAGLE CAD. The tutorials and help content that

is supplied with EAGLE are both excellent, but they are missing

some explanations on the layers so this guide can supplement it.

The layers are explained through the use of examining through-hole

components, surface mount components, the PCB legend(s) and the

edges of the board. Finally, there are working examples of

component construction with a focus on the layers. The working

examples are supplied with source code for easy replication.

Contents

Components overview – PCB legend – Surface mount components –

Through-hole components – Holes – PCB outline and protected

areas – Component creation process – Appendix (Source code, Layer

colour reference)

Components overview
At a birds-eye view, components typically contain some type of

pads, and a legend for the PCB. The layers are used to define all this

in detail, so that the steps to manufacture the PCB are catered for,

with all the information that is needed.

PCB legend

The PCB legend is white text can be printed onto the PCB. This is

useful for showing where the components will be placed, and also

the identifier (resistor R1, R2 etc) or component value (the default

CAM processor settings don’t print the component value). Some

manufacturers can print legends on both sides of the board.

The default setting is to print a top legend of tNames, tPlace and

Dimension layers. (The Dimension layer is just the outline of the

board). Some symbols show the tPlace legend trampling over the

SMD pad, but the manufacturer will automatically override this

because of the tStop layer.

The tStop layer is an outline which is used to determine where the

green insulating colour on the PCB will not occur (i.e. the pad will be

copper/silver, with no green insulator).

 The tStop layer always takes precedence.

Here is an example. Here, the tPlace layer clearly transgresses the

tStop layer. This is ok, the manufacturer will just not print the

legend in the whole tStop area. It protects the pad. In general, it can

therefore be assumed that no legend can ever accidentally cover a

pad.

EAGLE CAD layers reference rev. 1.0 2

To summarise, it can be seen that the manufacturer will print a

legend taking into consideration the Stop layer.

The next example shows the component identifier (tNames layer)

and component value (tValues layer) for a capacitor. It can be seen

that there are some vias on the board, and the text is trampling

over the vias. There is no problem electrically, because the tStop

area around the via will protect it from the legend. However

visually, the board text legend will have a butchered ‘5’ in the text

‘C5’. To fix this for visual reasons, the C5 text should be moved.

Note there is no need to move the ‘680uF’ text (even though that is

trampling over a via too), because the tValues layer is not usually

part of the legend anyway. If you wish to make it part of the legend,

then ideally it should be moved, to prevent a butchered digit ‘0’ in

‘680uF’ in this example.

Component text is moved by using the ‘smash’ icon and then

selecting the component. It will separate the combined component.

Here is something else that is common in many of the packages. The

curved line in the image below is the usual tPlace layer, but the

rectangle covering the pad is the tDocu layer. The tDocu layer is

generally a useless layer. It is not part of the PCB or the legend, so

EAGLE CAD layers reference rev. 1.0 3

the fact that it is trampling the pad can always be safely ignored.

The tDocu layer is used only when documentation is printed, to

show where the component goes.

Surface mount components
The cream layer is the solder paste layer, i.e. the area where the

paste would be applied (before the components are placed on the

board) in a manufacturing process.

The stop layer is the same as described earlier, i.e. it is the area

which will not be coated green.

Through-hole components
The pads automatically contain drill holes and the ‘tStop’ outline

which is used to determine where the green insulating colour on the

PCB will not occur.

Holes
Components may need holes; here is an example of an LED with a

plastic light pipe fitting. Holes can also be placed directly on the

circuit board. When a hole is placed, it can be seen by viewing the

Holes layer. Note that there are different symbols for different sized

holes, so visually on the screen you may see a different shape from

the one in this example. Regardless of the symbol on the screen, the

final drilled hole is the same of course, it is just a hole.

EAGLE CAD layers reference rev. 1.0 4

Note that there is a circle for the hole symbol in the Dimension layer

too, and this can be used to see the actual circumference of the

drilled hole.

PCB outline and protected areas
The overall PCB shape is defined using the Dimension layer. Usually

it is good to ensure that no components are placed too close to the

edge of the board, and that no tracks are drawn too close to the

board. These two functions are achieved using the tKeepout

(banned area for component placement) and tRestrict (banned area

for tracks) layers respectively. The tKeepout and tRestrict layers can

also be used elsewhere too, their usage is not limited to the edge of

the PCB. There is also a vRestrict layer for vias (banned area for

vias). In summary it is generally wise to place these layers at least on

the edges of the board.

The diagram here shows the bottom-left corner of a PCB. The

outline of the PCB is drawn in the Dimension layer with a width of

zero.

For the Restrict/Keepout layers, five rectangles (all on top of each

other effectively) were drawn for each side of the PCB. These five

layers prevent components from being placed too close, it prevents

vias and also tracks.

Note that the rectangles on the left edge of the board are quite

wide. This is because this board was intended to be slid into a

grooved metal enclosure along that edge. The metal groove was

required to be kept totally away from components, vias and tracks.

Component creation process
The component creation process is well described in other

documents, so this document will only touch on some aspects

concerning layers, and will not focus on the schematic symbol nor

the pad and electrical pin naming, etc.

EAGLE CAD layers reference rev. 1.0 5

Most designs will need some component created, and this

document focuses on one surface mount component and one

through-hole component.

1. Lay down the pads

The pad size and location are of course highly important. Sometimes

bits of an existing component can be reused. If this is not possible, it

is best to consult the component data sheet.

Here is an example of the TQFP-48 package recommended landing

pads, from Infineon’s website:

Dimensions:

Ax = 8.45 Ay = 8.45 e = 0.50 L = 1.35 B = 0.29

From this diagram and dimensions there is sufficient information to

construct the pads in EAGLE.

It is also possible to automate the component construction. An

example for constructing the TQFP package pads is shown in the

appendix.

The code is entered into a computer, and then the first few lines can

be edited based on the data sheet:

#define PWIDTH 0.29 /* this is the pad width in mm */
#define PHEIGHT 1.35 /* this is the pad height in mm */

#define AX 8.45
#define e_val 0.5
#define pins 48

The code lines above clearly show how the information from the

data sheet can be mapped into a computer program.

On a Linux server, the program can be compiled and then run.

g++ tqfp48.c -o tqfp48_executable
./tqfp48_executable > tqfp48.scr

This will generate a tqfp48.scr file which is an EAGLE script file. The

first few lines of the generated files contain this:

grid mm
grid 1
smd 0.290000 1.350000 (-2.750000 -4.225000)
smd 0.290000 1.350000 (-2.250000 -4.225000)
smd 0.290000 1.350000 (-1.750000 -4.225000)
smd 0.290000 1.350000 (-1.250000 -4.225000)
... etc

EAGLE CAD layers reference rev. 1.0 6

When this script is run in EAGLE (Windows or any other version) it

will construct the pads as shown here.

The code could be extended to also draw an outline on the tPlaces

layer.

2. Draw the outline

The component outline is drawn in one of the layers that will make

it into the legend, i.e. the tPlaces layer.

Here is an example for a through-hole component; a toroid inductor

mounted vertically.

Note that even though the tPlaces layer tramples over the pads, this

does not matter since the pads always have a tStop outline to

protect them.

A program to automate this is shown in the appendix. It can draw

toroids for mounting horizontally or vertically.

Here is the specification for a toroid.

 By modifying the first few lines, it is possible to select the toroid

dimensions, and the number of turns of wire on the toroid.

// *************** CONFIG ********************************

// style 0=vertical mount, 1=horizontal (flat mount)
#define STYLE 1

// drawing thickness (0.6mm should be always fine)
#define LTHICK 0.6
// toroid dimensions
#define T_ID 13.3 // inside diameter in mm
#define T_OD 23.6 // outside diameter in mm
#define T_WIDTH 8.38 // toroid thickness in mm

// wire details
#define W_THICK 1.626 // 1.626mm is 16 SWG
#define TURNS 18 // inductor will have 18 turns

// wire minimum bend radius
#define MINB 1 // 16 SWG wire will need 1mm to bend
// spacing of turns from each other (in mm)
#define GAP 0 // trial and error, start with zero
// ***

The settings above are for an inductor based on the data sheet of

this toroid core:

EAGLE CAD layers reference rev. 1.0 7

An example horizontal-mount toroid generated with these settings

would look like the following:

3. Label the part

The last essential step is to assign placeholders for the component

identifier and component value, in the tNames and tValues layer

respectively. This is best done manually and not automated, since

there may be a preference to locate it in a nice position visually. The

placeholder text must be >NAME and >VALUE respectively.

The placeholder text for the component identifier should ideally not

trample over pads, since visually it will be unreadable when the

board is manufactured.

4. Optional steps

If no tracks or vias are desired under certain areas of the

component, then the tRestrict and vRestrict layers should be used

to define the region. This is an important step for certain

components due to interactions caused by inductance for example.

It may be desirable to place an outline in the tDocu layer. It can be

similar to the one in the tPlaces layer if desired, or a simplified

version. This is not an essential step by any means.

Appendix

TQFP-48 example code
// TQFP drawing tool v1.0
// Revision log:
// Version 1.0
//
#include <stdio.h>

#define PWIDTH 0.29
#define PHEIGHT 1.35

#define AX 8.45
#define e_val 0.5
#define pins 48

int
main(void)
{
 int i, j;
 double x, y;
 double p, np;
 int ti;
 double ax2, nax2;
 int sc;
 int iit;

 printf("grid mm\n");
 printf("grid 1\n");

 p=pins/4;
 p=p/2;
 ti=(int)p;
 p=(double) ti;
 p=((p-1)*e_val)+(e_val/2);

 iit=pins/4;
 if (iit % 2 == 0)
 {
 // even number, nothing else to do
 }
 else
 {
 p=p+e_val/2;
 }

 np=0-p;

EAGLE CAD layers reference rev. 1.0 8

 ax2=AX/2;
 nax2=0-ax2;

 sc=pins/4;

 x=np;
 y=nax2;
 for (i=0; i<sc; i++)
 {
 printf("smd %f %f (%f %f)\n", PWIDTH, PHEIGHT, x, y);
 x=x+e_val;
 }

 x=ax2;
 y=np;
 for (i=0; i<sc; i++)
 {
 printf("smd %f %f (%f %f)\n", PHEIGHT, PWIDTH, x, y);
 y=y+e_val;
 }

 x=p;
 y=ax2;
 for (i=0; i<sc; i++)
 {
 printf("smd %f %f (%f %f)\n", PWIDTH, PHEIGHT, x, y);
 x=x-e_val;
 }

 x=nax2;
 y=p;
 for (i=0; i<sc; i++)
 {
 printf("smd %f %f (%f %f)\n", PHEIGHT, PWIDTH, x, y);
 y=y-e_val;
 }

 return(0);

}

Toroid inductor example
// toroid drawing tool v1.0
// Revision log:
// Version 1.0

//

#include <stdio.h>
#include <math.h>

#define PI 3.141592654

#define DEG90 1.5707963
#define DEG180 3.141592654
#define DEG270 4.71238898
#define DEG360 6.28318531

// ***
// *************** CONFIG ********************************

// style 0=vertical mount, 1=horizontal (flat mount)
#define STYLE 1

// drawing thickness (0.6mm should be always fine)
#define LTHICK 0.6
// toroid dimensions
#define T_ID 13.3
#define T_OD 23.6
#define T_WIDTH 8.38

// wire details
#define W_THICK 1.626
#define TURNS 18

// wire minimum bend radius
#define MINB 1
// spacing of turns from each other (in mm)
#define GAP 0
// ***
// ***

void vect_to_cart(double angle, double length, double *x,
double *y);

int
main(void)
{
 int i;
 double wire_outerrad, wire_innerrad, in_circum, out_circum;
 double wound_in_circum, wound_deg, sa;
 double ang_inc, ax, ay, bx, by;

 printf("grid mm\n");
 printf("grid 1\n");
 printf("layer 21\n");
 printf("set wire_bend 2\n");

EAGLE CAD layers reference rev. 1.0 9

 printf("wire %.2f\n", LTHICK);

 if (STYLE) // horizontal mount
 {
 // draw circles
 printf("circle (0 0) (%.2f 0)\n", T_ID/2);
 printf("circle (0 0) (%.2f 0)\n", T_OD/2);
 }
 else
 {
 // vertical mount, draw square
 printf("wire (-%.2f %.2f) (%.2f %.2f)\n", T_OD/2,
T_WIDTH/2, T_OD/2, T_WIDTH/2);
 printf("wire (%.2f %.2f) (%.2f -%.2f)\n", T_OD/2,
T_WIDTH/2, T_OD/2, T_WIDTH/2);
 printf("wire (%.2f -%.2f) (-%.2f -%.2f)\n", T_OD/2,
T_WIDTH/2, T_OD/2, T_WIDTH/2);
 printf("wire (-%.2f -%.2f) (-%.2f %.2f)\n", T_OD/2,
T_WIDTH/2, T_OD/2, T_WIDTH/2);

 }

 printf("wire %.2f\n", W_THICK);
 printf("change drill %.2f\n", W_THICK+0.2);
 printf("pad %.2f ROUND\n", W_THICK+2);

 wire_outerrad=(T_OD/2)+MINB+(W_THICK/2);
 wire_innerrad=(T_ID/2)-MINB-(W_THICK/2);
 in_circum=2*PI*wire_innerrad;
 out_circum=2*PI*wire_outerrad;
 wound_in_circum=TURNS*(W_THICK+GAP);
 wound_deg=(wound_in_circum/in_circum)*PI*2;
 //sa=((PI*2)-wound_deg)/2;
 sa=((PI*2)-(((((TURNS-1)*(W_THICK+GAP))-
GAP)/in_circum)*PI*2))/2;
 ang_inc=wound_deg/TURNS;

 for (i=0; i<TURNS; i++)
 {
 vect_to_cart(sa+(ang_inc*i), wire_innerrad, &ax, &ay);
 vect_to_cart(sa+(ang_inc*i), wire_outerrad, &bx, &by);

 if (STYLE) // horizontal
 {
 printf("wire (%.2f %.2f) (%.2f %.2f)\n", ax, ay, bx, by);
 if (i==0)
 {
 printf("pad (%.2f %.2f)\n", ax, ay);
 }
 }
 else // vertical

 {
 if (i==0)
 {
 printf("pad (%.2f %.2f)\n", ax, (T_WIDTH/2)+MINB);
 }

 }

 }
 if (STYLE) // horizontal
 {
 printf("pad (%.2f %.2f)\n", bx, by);
 }
 else // vertical
 {
 printf("pad (%.2f -%.2f)\n", ax, (T_WIDTH/2)+MINB);
 }

 return(0);
}

void
vect_to_cart(double angle, double length, double *x, double *y)
{
 double nx, ny;
 ny=0-cos(angle); nx=sin(angle);
 ny=ny*length; nx=nx*length;

 *y=ny; *x=nx;

}

Default layer names and settings summary

EAGLE CAD layers reference rev. 1.0 10

THE END

------ x ------

